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Probabilistic aspects of strength of short-fibre 
composites with planar fibre distribution 
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The study of the fracture of short-fibre composites must involve statistics as an integral part. 
Two components of composite strength, each with probabilistic aspects, are described in this 
paper: fibre crossover reinforcement, and fibre gap bridging before fracture. The fibre crossover 
density is proposed as a measure of mutual fibre strengthening, and simulations are performed to 
estimate this density. Several different fibre orientations are proposed which have identical 
elastic properties but different crossover densities, indicating that more information is required 
for strength prediction than for elastic property prediction. The crossover density is a random 
variable whose average increases roughly as a fibre length squared function, and whose coef- 
ficient of variation decreases with increasing fibre length. The phenomenon of fibres bridging 
microcracks is also examined as a fracture mechanism for fibres whose length well exceeds 
their critical length. General probabilistic expressions are derived which give the distribution of 
the number of fibres bridging a gap perpendicular to the applied load. These formulae are 
applied to the distribution of strength of an aligned fibre system. 

1. In t roduct ion 
Mechanical properties of composites can be broadly 
divided into two categories: thermoelastic properties, 
and strength properties. A variety of different 
approaches have been used for employing micro- 
models to predict the thermoelastie properties of 
short-fibre composites. Often regular arrays of fibres 
are assumed, in contrast to the actual arrays as seen 
through photomicrographs. These assumptions seem 
to work well, however, since elastic constants are the 
reso-it of an averaging process. The calculation of 
elastic properties thus tends to be fairly robust with 
respect to the assumptions employed. The strength 
properties of composites, however, depend on stoch- 
astic microscopic events typical of a brittle material. 
The distribution of strength thus requires careful 
physical modelling combined with a statistical 
approach. The fracture process depends on point, not 
average phenomena. Additional information is likely 
to be required for strength prediction, which infor- 
mation is not required for thermoelastic property 
prediction. 

A variety of approaches have been advanced to 
predict the strength of short-fibre composites [1-17]. 
The great majority of these papers [1-14] attempt to 
predict strength as a single-valued variable, ignoring 
the inherent statistical nature of strength. In addition, 
the theoretical models advanced are almost always 
restricted to two specialized fibre orientation states: 
completely aligned, and completely random. The most 
common analysis used is the "laminate analogy", a 
constant-strain model for the composite constituents. 
For thermoelastic properties of a material with either 
continuous or very high aspect ratio reinforcement, 

this analogy gives good results. For strength proper- 
ties, the relative locations of weak and strong volumes 
are dearly important to composite strength. The 
strength properties can thus deafly not be treated as 
single-valued variables without loss of valuable 
physical insight. 

For the case of fibre-dominated fracture, the initial 
probabilities of fibre fracture depend on the elastic 
solution for fibre loads. Although no closed-form 
solution is available, a photoelastic study [18] has 
indicated that local reinforcement may be provided by 
fibres crossing over each other. This has the effect of 
lowering fibre load, hence lowering the probability of 
fracture. An analogous effect of crossed fibres provid- 
ing greater strength has been observed in continuous- 
fibre composites [19-21] and will be commented on 
later in this paper. This localized strengthening effect 
is an example of information required for a strength 
analysis, but not for an elastic property analysis. In 
the first part of this paper, the effect of fibre crossover 
density is explored using a simulation method. 

As the composite specimen progresses toward final 
fracture, the action of fibres bridging a microcraek 
becomes important. These microcracks are formed 
during fabrication [22], and may be expected to grow 
and coalesce during progressive fracture [23, 24], 
resulting in a critical damage zone or gap at final 
fracture. The strength of the fibres at any given cross- 
section depends on their number, strength distribution, 
and interaction. A general theory involving all of these 
variables is not available; however, the more variables 
which may be considered probabilistically, the greater 
the understanding of the overall process of strength 
variability. In the second part of this paper, general 
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methods are developed for the number of fibres cross- 
ing a plane or bridging a gap perpendicular to the 
applied load. The developed methods are then applied 
to the particular cases of aligned and random fibre 
distributions. 

2 .  F i b r e  c r o s s o v e r  a n d  r e i n f o r c e m e n t  

The arrangement of fibres may have an influence on 
strength by offering local reinforcement at fibre cross- 
over points. According to a photoelastic study by 
McGarry and Fujiwara [18], the stress in a longitudinal 
fibre is decreased in the vicinity of a neighbouring fibre 
which crosses above or below it (see Fig. 1); (as the 
crossover fibre B becomes aligned with longitudinal 
fibre A, the effect on fibre A may change from local 
reinforcement to more general load sharing). The 
stress reduction in the crossover fibres will depend on 
the vertical distance between the fibres. However, 
since no closed-form or numerical solutions for this 
stress reduction are available, we will consider only an 
average crossover effect. 

If the fibre strength is statistically distributed 
according to a Weibull distribution, the action of this 
crossover reinforcement may be easily seen. The 
probability of failure F of a fibre under a far-field 
stress a = e/Er (applied strain/fibre modulus) may be 
given [25] by 

F(a) = 1 - exp -- jv 

where (~, a0) are WeibuU (shape, location) parameters, 
d V = fibre volume element = (n/4)d~dx and t = 
geometric locus to account for deviations from far- 
field stress tr. 

Since the values of ~t are typically greater than 10, 
the impact of a local stress reduction (t < 1) from 
crossover is great. The reinforced crossover region 
contributes little to the probability of failure. This 
reduction in failure probability will also occur if the 
longitudinal fibre is not perfectly aligned with the 
load. The number of crossover points should thus 
have a direct effect on the fracture of fibre-dominated 
composites. 

The stiffness properties of short-fibre composites 
may be modelled using orientation averaging tech- 
niques [26-32]. The effective elastic constants depend 
on moment-like integrated properties of the fibre 
orientation distribution. For planar fibre orientations, 
these effective properties may be expressed [30] as 

c,j = c ° + F(C °, Cu)L + c(c , C,j)g, (2) 
where C~ are properties for a random state of orien- 
tation, C u are certain linear combinations of con- 
stituent properties andf~, g~ are integrated orientation 
parameters; fp = 2(cos 2 q~) - 1, gp = ] [ 8 ( C O S  4 ~ b )  - -  

3] and <cos"~b> = ~-"~2 cos" tkn(~b)d~b. 
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Thus, two different fibre orientation distributions 
with the same fibre volume fraction may exist which 
give the same elastic properties; equality offp, gp is 
sufficient to ensure this. For example, consider two 
orientation distributions: 

n,(~b)  = C I - C 2 [ ~ [  ~ e  [ - -  2 '  21 (3a) 

Use of the delta function as in Equation 3b denotes 
that the proportion of fibres at 0 ° is C31(C3 + 2C4); 
the proportion at re/4 is C4/(Ca + 2C4); the proportion 
at - n / 4  is C4/(C3 + 2C4). Using the normalization 
requirement, we generate two equations: 

f~/2 -~/2 n,(~b)d~b = 1 i = 1, 2 (4) 

The remaining two equations are derived by setting 
the expected values of cos2 ~b and cos4$ equal for the 
two distributions, i.e. 

( cOS2 (~)l = ( cOS2 (~)2 
(5) 

( c o s ' e > ,  = (cos*¢>2 

where (cos n ~b), = ~ ~2 cos" ~bn,(tb)dtb. This last con- 
dition is sufficient and necessary for equality of 
orientation parameters fp, gp, and hence equality of 
elastic properties, between the two distributions. Solv- 
ing the linear system given by Equations 4 and 5 for 
the constants Ci, we find 

C I = - + - 0 .711 

(72 = 1/2 

C3 = 1/2 

C4 = 1/4 

f .  = 0.50 

g p  = 0 . 4 0  

(6) 

1 
n3(¢) = - n/2, 

7[ 

1 

¢ , [ -   /21 

These distributions already satisfy the normalization 
requirement. 

The above orientation distributions may be simu- 
lated to determine the average number of crossover 
points of the fibres. A viewing space was defined, and 

This indicates a partial alignment of the fibres, with 
resulting orthotropy of properties. 

As another example, consider two members of the 
class of distributions with quasi-isotropy. For all 
members of this class, fp = gp = 0. Following the 
form for quasi-isotropic laminates, consider the 
elastically equivalent distributions: 



T A B L E I Fibre crossover number for orthotropic orientations n I (~), n2(q~ ) 

Fibre length n t (~) 
(in.)* 

Average Standard Coefficient of 
deviation variation (%) 

n 2 ( ~ )  

Average Standard Coefficient of 
deviation variation (%) 

0.5 20.0 3.9 19.5 
1.0 80.3 8.4 10.5 
2.0 306.8 18.4 6.0 

1.5.3 1.2 7.8 
69.2 6.4 9.2 

292.5 17.5 6.0 

* I in. = 25.4 mm. 

the centres of gravity were assigned within the space 
using a random-number generator. The angles were 
assigned to ensure the proper number of fibres within 
defined intervals (continuous distributions) or at given 
angles (delta function distributions). Continuous 
distributions used 10 ° intervals, with those fibres 
within an interval having the angle of the centre of 
the interval. Within a 26in. x 25in. (660mm x 
635mm) viewing space, 400 fibres were drawn, and 
the number of intersections was calculated. Results 
are given in Tables I and II for an average of six 
replicates, and sample fibre distributions are shown in 
Figs 2 to 5. 

3. Calculat ions fo r  bridging fibres 
The number of fibres crossing a given plane or bridging 
a gap perpendicular to the applied load has impli- 
cations for the strength of the material. This number 
is a random variable, dependent on the fibre orien- 
tation distribution, the fibre length distribution, the 
spatial distribution of fibre centres of gravity, and the 
size of the gap. In the following development, the fibre 
length is assumed constant, based on the relative 
insensitivity of composite strength to moderate fibre 
length variation [17]. The number of bridging fibres 
yields information on composite strength, as indicated 
by simple rule-of-mixtures calculations [16]. The fibre 
length is assumed substantially greater than the critical 
length so that fibres which bridge the developed 
damage zone or gap will tend to fracture, and not pull 
out. Fibres which end within the gap are assumed to 
pull out. 

Results are obtained first for an aligned fibre 
system. Consider a fibre whose centre of gravity (e.g.) 
is at (X0, Y0) with length L The defined area is m[0, a], 
ye[0, b], with a, b ~> I so that boundary effects may be 
ignored (see Fig. 6). 

The condition for a fibre's crossing a plane X = A 
may be stated as 

[ ' , ] P X o + ~ > > . A n X o - ~ < < . A  

o r  

P a-5.<x0 A+ (8) 

where X0 = random variable of x-location of fibre 
e.g. Assuming a uniform, homogeneous fibre distri- 
bution, the fibre e.g. density function fx0 is 

1 
= - m(0, a) (9) f~°(x) a 

This yields an expression for a fibre's crossing the 
plane, which is independent of plane location A: 

f'A+l/2 
e[fibre crosses plane x = A] = Ja-t/2 f~o (x) dx 

1 
= - ( 1 0 )  a 

Similarly, the probability of a fibre's bridging a gap fll 
beginning at x = A may be stated as 

P[fibre bridges gap ill] 

I ' ' ] = P Xo+~>~A + f l t n X o - ~ < ~ A  

= P A - - g - I - f l l < ~  Xo<~ A + fl < 1 

l (1 t )  (11) 
a 

The probability of a fibre's crossing a plane or 
bridging a gap may also be derived for a non-aligned 
planar system (see Fig. 7). The probability of crossing 
a plane x = A is given by 

P[fibre crosses plane x = A] 

= P X0 + ~cos~b >/ A n X o -  ~cosq9 ~< A 

~be(-  ; ,  ; )  (12) 

To illustrate the solution for this case, consider a 

T A B L E I I Fibre crossover number for isotropie and quasi-isotropic orientations n 3 (~b), n4 (~) 

Fibre length n3(O) n4(~b ) 
(in.)* 

Average Standard Coefficient of Average 
deviation variation (%) 

Standard 
deviation 

Coefficient of 
variation (%) 

0.5 24.0 4.2 17.5 18.5 1.8 9.7 
1.0 98.3 12.6 12.8 83.2 8.8 10.6 
2.0 379 27.1 7.2 341.3 12.9 3.8 

* I in. = 25.4 ram. 
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Figure 2 Simulated fibre distribution for n t (~). Figure 4 Simulated fibre distribution for n3(q~ ). 

uniform orientation and location distribution: 

Using 

fxo(x) = 1/a xe(O, a) 

f¢(~b) = 1/~ q ~ ( 7 ' 7 )  (13) 

standard methods for functions with non- 
unique inverses [33], the density and distribution 
functions for the random variable Z = (//2) cos ~ are 
given by 

T'" 2 z2 
fAz) = 

= --  COS-I + 
7~ 

co, 

(14) 

The desired probability (Equation 12) of crossing a 
plane thus becomes 

e [ x 0 +  z > ~  A n : C 0 -  z ~< .~] 

= fAr~f=(x , z ) d x d z  (15) 

' ~ - - x ) < ~ .  - -  / \  - - S - - 9 ~ ' l  

t \ \  - - ~  I__'~,~ \ \ ~  q 
P__~ .~- -_= , . -x_ / /  = : ' - ~  
[-- ~_ ~ - - - :  ----/ ---.~ / - -  - -  I 

Figure 3 Simulated fibre distribution for th(~b ). 
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The area of integration is that satisfying the left-hand 
side of Equation 15, subject to the domains of definition 
of X, Z. We assume independence of X and Z, that is, 
location and angle, to solve Equation 15 as 

ft/2 [a+z l d x 2 i ( / ) 2  z 2]-t/2dz 21 - - = - -  ( 1 6 )  
Jz=O j~=,~-z n na 

The number of fibres bridging a cross-section of width 
fll starting at x = A gives a similar result for uniform 
distributions of location and angle given by Equation 
13: 

P[fibre bridges gap ill] 

[ , P Xo + g cos q~ i> .4 +/~l  c~ X. 

_ _12 cosy ~< a ]  (17) 

= P [ X o + Z > ~ A + [ 3 1 C ~ X o - Z < . A ]  / / <  1 

_ 2 i l l  c o s - ' f l  + 2 / ( 1  - f l2 ) , /2  
rca rm 

Note that Equations 10, 11, 16 and 17 are insensitive 
to the particular value of cross-section A, as expected. 
This is in keeping with our assumption of a spatially 
stationary process (Equation 9). 

The above Equations 11 and 17 give the probability 
for a fibre crossing a gap. The probability that n fibres 
out of N total will cross a gap is thus given by the 
binomial distribution 

P[n fibres bridge gap] = n /~(1 - 

0 <~ n ~< N (18) 

where p is the gap crossing probability for an individual 



Figure 5 Simulated fibre distribution for n4(~). 

fibre. For  large N, n, this calculation may be replaced 
by the Poisson distribution [34] 

~n e -,~ 
P[n fibres bridge gap] - n--'T- 

where/a = Np. 

(19) 

4. Discussion and conc lus ions  
The effect of  fibre crossover should increase composite 
strength due to providing local reinforcement for 
stressed fibres. It is possible to have different fibre 
orientations with the same elastic properties but dif- 
ferent crossover densities, hence different strengths. 
The density of  crossovers will depend on fibre orien- 
tation, fibre length and number of fibres, and will itself 
be a random variable. A numerical simulation has 
been carried out to determine the sensitivity of fibre 
crossover to the fibre length and orientation. 

The dependence of crossover on fibre length may be 
seen to be roughly a length squared function; i.e. 
doubling fibre length will increase fibre crossover 
density by a factor of four. It may also be seen that the 
coefficient of variation (COV) of fibre crossover 
density generally decreases with increasing fibre 
length. This points to a lessening of variability of this 
strengthening mechanism with increasing fibre length. 

b 

LY 

4" I 

x 
i1 

rl 
Figure 6 G e o m e t r y  o f  a l igned fibre. 
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Figure 7 G e o m e t r y  o f  non-a l igned  fibre. 

The particular orientation distribution chosen is seen 
to have an impact on crossover density and its COV. 
For the 1/2 in. (13 mm) fibre length, we may achieve a 
31% increase (for n~ (~b) compared with n2(~b)) or 30% 
increase (for n3 (q~) compared with n4(~b)) in crossover 
density for identical elastic properties. The COV of the 
crossover density may also vary from 19.5% to 7.8% 
for n t and n2, or from 17.5% to 9.7% for n 3 and n 4. 
The optimization of the strengthening of fibre cross- 
over may then be carried out by considering various 
distributions with the same integrated properties fp, 
gp, and hence the same elastic properties. 

A simple illustrative calculation may serve to 
illustrate the potential effect of the average crossover 
number for two different fibre distributions which 
possess identical elastic coefficients. Consider the 
random fibre system n3(~b) and the quasi-random 
system n4(q~) given by Equation 7. For  a representative 
l in.  x l in.  x 0.10in. thick (25mm x 25ram x 
2.5 rnm thick) composite piece, with volume fraction 
Vr = 50%, with 16#m fibres present in bundles con- 
taining 150 fibres, each bundle I in. (25mm) long, 
there are 1078 "fibres" (bundles). Assume that at each 
crossover point, t= ~ 1 in. Equation 1 so that the 
crossover region effectively does not contribute to the 
probability of fracture. Since the true details o f  t are 
unknown, let us assume that the reduced fracture 
probability region extends over (ndr) where df = the 
bundle diameter. For close packing with the bundle 
acting in concert as a single unit, its dr = 238#m. 
Allowing for a simple weak-link model for damage 
leading to failure, the ratio of reliabilities for n3(~) 
and n4(¢) are 

N 
II  exp [ -  Li(ai.3/ao) =] 

R3 ;= i 
N (20) 

R4 II exp [ -  Lf(ai,4/ao) =] 
i ~ l  

where N = total number of  fibres, ai.k = load in ith 
fibre for distribution k (k = 3, 4) and L~ = effective 
fibre length; Li = L - j ( n d r )  where j = number of 
crossovers for the ith fibre. 

For these fibre distributions, the average load carried 
on a typical fibre may be approximately prorated 
by (cos3q~) = 0.424 [17], so that the typical fibre 
load a~ = 0.424 at.. If  we set afu = 200 x 103p.s.i. 
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TABLE I I I  Results ofcomputer simulation 

n R3/R 4 

1 1.019 
5 1.096 

10 1.202 

(I.38GPa), o-0 = 220 x 103p.s.i. (1.52GPa) and 
= 10, then the ratio of the reliabilities at the average 

failure stress may be calculated from 

= e x p  2(m~- m,,)nd~ 0.4~o- (21) 
\ o0 / 3 

where mi = number of crossover points for distri- 
bution i. 

The factor of two arises in Equation 21 since m 
crossover points affect 2m fibres. Actual values of mj 
from computer simulation were m 3 = 239685, 
m4 = 226 108 (see Table III for the numerical results). 
This illustration points to the potential effect of an 
increase in the number of crossover points. It also 
expresses the need for greater understanding of the 
stress locus function t in Equation 1 so that more 
quantitative results for reliability improvement may 
be obtained. 

Although making no claims that the fracture of 
continuous and discontinuous fibre composites is 
identical, it is interesting to note that a similar 
strengthening effect of crossover fibres has been 
observed in two studies involving continuous-fibre 
laminated composites. In a study of tensile strength by 
Herakovitch [19], the strength of alternating sequence 
angle-ply laminates [(+ 0)2], was greater than that of 
clustered sequence laminates [+ 02 / -  02],. In 
Herakovitch's study, the action of the alternating 
layers apparently forced the failure surface to fracture 
fibres, as opposed to cracking the matrix and delami- 
nating. In addition, a study of rail shear strength by 
Chang et al. [20] showed significant differences in rail 
shear strength exist for various 0/90 laminates. The 
shear strength drops by 1/3 when the proportion 
of 0 ° plies is increased by 10%, and does not change 
when the proportion is increased by another 10% (see 
Table IV) [21]. The dramatic change in shear strength 
is hard to explain, since a decrease in the proportion 
of 0 ° layers (increase in 90 ° layers) might be expected 
to modestly increase strength due to the clamping of 
the 90 ° fibres (the 0 ° direction is in the rail direction). 
Consider instead the number of runs in each laminate 
sequence, where a run is defined as a continuation of 
the same orientation in the stacking sequence. The 
largest number of runs implies the maximum of fibre 

crossovers, imparting crack-stopping ability to the 
laminate. The number of runs is given in Table IV, 
and indicates that fibre crossover is a desirable trait 
for increased strength. 

Expressions have been developed for determining 
the probability of a fibre's crossing a plane or bridging 
planes perpendicular to the applied load. These for- 
mulations have been applied to the case of an aligned 
fibre and a random fibre system with N fibres. The 
distribution of the number of bridging fibres is 
binomial, and may be approximated by the Poisson 
distribution for large N. The effect on composite 
strength may be seen using a rule-of-mixtures approach 
with an aligned fibre system. Consider a specimen with 
dimensions a x b x c in the x, y, z directions, sub- 
jected to a force in the x direction. The volume fraction 
of fibres, V~, is related to the total number of fibres N 
by 

N(n/4) d~ l 
Fr = abc (22) 

The normal rule-of-mixtures approximation for the 
strength of a composite with long fibres is [16] 

ao. = af. Vr + %(1  - Vr) (23) 

where (o-cu, o-fu) = ultimate tensile strength of (com- 
posite, fibre) and am = matrix stress at ultimate 
tensile strain of fibres. 

The matrix term in Equation 23 is small even before 
cracking, and matrix cracks or gaps further reduce it, 
so that it may be ignored [23]. The Vr term in Equation 
23 implicitly represents an average number of fibres 
bridging the fracture zone gap. If Nb represents 
the number of bridging fibres, the composite ulti- 
mate strength for loading in the x direction may be 
represented by 

Nb (24) O'eu = o-fu~a~7--~¢ 

Knowing the distribution of Nb will give the distri- 
bution of o-c,, assuming that the variability of fibre 
failure stress is less than the variability of Nb: 

afu(~/a)d~n] 
P[Nb = n] = P o-~ = ~c .] (25) 

This method may also be used to calculate the prob- 
ability that composite strength lies between certain 
limits: 

P Eo-c"8 (o-"(~/~--~)~, " d~n'' o-r"(~:/4)d~n2"~lbe ]_J 

= P[Nb~(nl, n2)] (26) 

TA BLE IV Rail shear strength of symmetric cross-ply laminates 

No. of Volume fraction Stacking sequence 
plies of 0 ° plies (%) 

Runs in No. of Strength, S^w 
stacking replicates (p.s.i.)* 
sequence 

24 50 [(0/90)ds 
20 60 [0, 0, 90, 0, 0, 90, 0, 90, 0, 90], 
20 70 [0, 0, 90, 0, 0, 90, 0, 0, 90, 0L 

23 2 19480 
15 3 12860 
13 3 13210 

*1 p.s.i. = 6895Pa. 
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TABLE V Calculated strength distribution 

No. of bridging x PIN b <~ n] = P[acu <~ x] 
fibres, n (10 3 p.s.i.)* 

650 71.3 0.0368 
670 73.5 0.1840 
690 75.7 0.4930 
700 76.8 0.6633 
710 77.9 0.8049 
730 80.1 0.9583 
740 81.2 0.9848 

"103 p.s.i. = 6.895MPa. 

For illustration, a strength distribution is constructed 
using the data of Masoumy et al. [35] for aligned fibre 
composites. For I in. (25 mm) long fibre bundles com- 
posed of 110 fibres of diameter 16#m at a volume 
fraction Vr = 50%, the average strength 5cu is 
75 x 103 p.s.i. (517 MPa). The bundle is observed to 
act in concert as a single fibre [35]. The gauge section 
has dimensions (a, b, c) of (3in., 1/2in., 1/8in.) 
(76 ram, 13 mm, 3 ram) [36], giving N, the total number 
of fibres, to be 2742. Using a first-order approxi- 
mation for Equation 24 at the average, we have 

(Np)Artrfu 
5c~ - bc (27) 

where  Af = a r e a  o f  f ibre b u n d l e ,  (Np)  = average  Nb 
va lue  for  a Be rnou l l i  p rocess  a n d  p = b r i d g i n g  p r o b -  

abi l i ty .  T h e  fibre s t r eng th  afu is a s s u m e d  to  be  
200 x 103p.s,i. ( 1 . 3 8 G P a ) .  E q u a t i o n s  27 a n d  11 m a y  

be  so lved  for  the  gap  size, wh i c h  is f o u n d  to 0.252 in.  
(6 .4 ram) .  U s i n g  this ,  we m a y  c o n s t r u c t  a s t r eng th  

d i s t r i b u t i o n  (see T a b l e  V). H a v i n g  f o u n d  a n  a p p r o x i -  

m a t e  va lue  for  the  g ap  size, the  p r e d i c t i o n  o f  s t r eng th  
d i s t r i b u t i o n s  a t  o t h e r  f ibre lengths ,  v o l u m e  f rac t ions  
a n d  o r i e n t a t i o n s  is poss ib le .  F u r t h e r  e x p l o r a t i o n  o f  

the m o d e l  p red ic t ions  a t  va r ious  f ibre v o l u m e  f rac t ions  
a n d  fibre lengths ,  for  a l i g n ed  sys tems wi th  a n d  wi th-  

o u t  f ibre s t r eng th  va r iab i l i ty ,  a n d  the  a d d i t i o n a l  

d e v e l o p m e n t  a n d  m o d e l  e x p l o r a t i o n  for  n o n - a l i g n e d  
sys tems  m a y  be  f o u n d  e lsewhere  [37, 38]. 
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